000 01482nab a2200229 c 4500
999 _c150200
_d150200
003 ES-MaIEF
005 20250205093639.0
007 ta
008 250203t2024 xxu||||| |||| 00| 0 eng d
040 _aES-MaIEF
_bspa
_cES-MaIEF
100 _931970
_aAcemoglu, Daron
245 1 0 _aRegulating transformative technologies
_c Daron Acemoglu and Todd Lensman
504 _aBibliografía.
520 _aTransformative technologies like generative AI promise to accelerate productivity growth across many sectors, but they also present new risks from potential misuse. We develop a multisector technology adoption model to study the optimal regulation of transformative technologies when society can learn about these risks over time. Socially optimal adoption is gradual and typically convex. If social damages are large and proportional to the new technology's productivity, a higher growth rate paradoxically leads to slower optimal adoption. Equilibrium adoption is inefficient when firms do not internalize all social damages, and sector-independent regulation is helpful but generally not sufficient to restore optimality.
650 4 _950141
_aIMPUESTO SOBRE EL VALOR AÑADIDO
650 4 _942572
_aDESARROLLO TECNOLOGICO
650 4 _947498
_aINTELIGENCIA ARTIFICIAL
650 4 _948148
_aPRODUCTIVIDAD
700 1 _972252
_aLensman, Todd
773 0 _9172578
_oOP 2145/2024/3
_tThe American Economic Review
_x 2640-205X
_g v. 6, n. 3, September 2024, p. 359-376.
942 _cART