000 | 01482nab a2200229 c 4500 | ||
---|---|---|---|
999 |
_c150200 _d150200 |
||
003 | ES-MaIEF | ||
005 | 20250205093639.0 | ||
007 | ta | ||
008 | 250203t2024 xxu||||| |||| 00| 0 eng d | ||
040 |
_aES-MaIEF _bspa _cES-MaIEF |
||
100 |
_931970 _aAcemoglu, Daron |
||
245 | 1 | 0 |
_aRegulating transformative technologies _c Daron Acemoglu and Todd Lensman |
504 | _aBibliografía. | ||
520 | _aTransformative technologies like generative AI promise to accelerate productivity growth across many sectors, but they also present new risks from potential misuse. We develop a multisector technology adoption model to study the optimal regulation of transformative technologies when society can learn about these risks over time. Socially optimal adoption is gradual and typically convex. If social damages are large and proportional to the new technology's productivity, a higher growth rate paradoxically leads to slower optimal adoption. Equilibrium adoption is inefficient when firms do not internalize all social damages, and sector-independent regulation is helpful but generally not sufficient to restore optimality. | ||
650 | 4 |
_950141 _aIMPUESTO SOBRE EL VALOR AÑADIDO |
|
650 | 4 |
_942572 _aDESARROLLO TECNOLOGICO |
|
650 | 4 |
_947498 _aINTELIGENCIA ARTIFICIAL |
|
650 | 4 |
_948148 _aPRODUCTIVIDAD |
|
700 | 1 |
_972252 _aLensman, Todd |
|
773 | 0 |
_9172578 _oOP 2145/2024/3 _tThe American Economic Review _x 2640-205X _g v. 6, n. 3, September 2024, p. 359-376. |
|
942 | _cART |