000 | 01330nab a2200217 c 4500 | ||
---|---|---|---|
999 |
_c148386 _d148386 |
||
003 | ES-MaIEF | ||
005 | 20231025130225.0 | ||
007 | ta | ||
008 | 231025t2023 us ||||| |||| 00| 0|eng d | ||
040 |
_aES-MaIEF _bspa _cES-MaIEF |
||
100 | 1 |
_966838 _aKönig, Johannes |
|
245 | 0 |
_aBias in tax progressivity estimates _c Johannes König |
|
500 | _aResumen. | ||
504 | _aBibliografía. | ||
520 | _aTax progressivity is central in public and political debates when questions of vertical equity are raised. Applied, structural research demands a simple way to capture it. A power function approximation delivers one parameter that captures the residual income elasticity — a summary measure of progressivity. This approximation is accurate, tractable, and interpretable, and hence immensely popular. The most common procedure to estimate this parameter, a log ordinary least squares specification, produces biased and inconsistent estimates. A nonlinear estimator solves this issue and, using different data sets, I find differences in estimates between 6 and 14 percent | ||
650 |
_aIMPUESTOS _947460 |
||
650 | 4 |
_948160 _aPROGRESIVIDAD |
|
650 | 4 |
_943299 _aELASTICIDAD IMPOSITIVA |
|
773 | 0 |
_9170356 _oOP 233/2023/2 _tNational Tax Journal _w(IEF)86491 _x 0028-0283 _g v. 76, n. 2, June 2023, p. 267-289 |
|
942 | _cART |