000 01330nab a2200217 c 4500
999 _c148386
_d148386
003 ES-MaIEF
005 20231025130225.0
007 ta
008 231025t2023 us ||||| |||| 00| 0|eng d
040 _aES-MaIEF
_bspa
_cES-MaIEF
100 1 _966838
_aKönig, Johannes
245 0 _aBias in tax progressivity estimates
_c Johannes König
500 _aResumen.
504 _aBibliografía.
520 _aTax progressivity is central in public and political debates when questions of vertical equity are raised. Applied, structural research demands a simple way to capture it. A power function approximation delivers one parameter that captures the residual income elasticity — a summary measure of progressivity. This approximation is accurate, tractable, and interpretable, and hence immensely popular. The most common procedure to estimate this parameter, a log ordinary least squares specification, produces biased and inconsistent estimates. A nonlinear estimator solves this issue and, using different data sets, I find differences in estimates between 6 and 14 percent
650 _aIMPUESTOS
_947460
650 4 _948160
_aPROGRESIVIDAD
650 4 _943299
_aELASTICIDAD IMPOSITIVA
773 0 _9170356
_oOP 233/2023/2
_tNational Tax Journal
_w(IEF)86491
_x 0028-0283
_g v. 76, n. 2, June 2023, p. 267-289
942 _cART