000 02248nab a2200265 c 4500
003 ES-MaIEF
005 20180419104445.0
007 t|
008 180419s2018 uk ||||| |||| 00| 0|eng d
040 _aES-MaIEF
_bspa
_cES-MaIEF
041 _aeng
100 1 _95201
_aSattinger, Michael
245 0 _aDouble limit analysis of optimal personal income taxation
_c by Michael Sattinger
260 _c2018
500 _aDisponible en formato electrónico a través de la Biblioteca del IEF.
500 _aResumen.
520 _aA double limit analysis is developed to determine the optimal personal income tax based on the principle that moving a marginal dollar of tax revenue from one income interval to another should not raise social welfare. The first order condition can be differentiated with respect to an interval boundary to yield a second order differential equation for the optimal income tax that can be solved to yield specific solutions. Application of an optimal income tax to a broader income range in general reduces tax revenues and requires greater subsidies at low-income levels. Optimal solutions are provided assuming Cobb-Douglas or Constant Elasticity of Substitution (CES) utility and lognormal or Pareto productivity distributions.
650 4 _950200
_aRENTA
650 4 _947460
_aIMPUESTOS
650 4 _97978
_aIMPOSICION OPTIMA
650 4 _933421
_aBIENESTAR SOCIAL
773 0 _9155429
_tOxford Economic Papers
_w(IEF)120956
_x 0030-7653
_g v. 70, n. 1, January 2018, p. 93-113
856 _uhttps://watermark.silverchair.com/gpx026.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAbowggG2BgkqhkiG9w0BBwagggGnMIIBowIBADCCAZwGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMpML0DB5Eq8_JtzoNAgEQgIIBbUvujgM830hhgcs8e1Ub3V_GDcjYXUHbqU80IUZDy_dHE0ynpeYt0nmxqrAC-jvYQaDhvbQTiqEjXW98gaghaJYotZHzKzXGwPbpEJOTnTST1xb7ctmX_CNKLPKPXR6bH42q31gTbF1uzBxXpmAZ1w3Kk_1wPs6FWKaqHFrR46bp2VfSaWlPcXTYLj6-wzcO8q4gCqRm0j6nyGzBCRF8HBiBSSMBO9ZkoRjYdVKzZITMU39HWUIVVdC4LvN2cdFDDBHZKlPWQbwRqhV4oVeJkukPdHzS3CiMs3h2NCdlqPoXwLLknV15lr611SqhGww0c3QgON3Mv4HnGz6AVPO29XYYoPn-fMG01ra4f6R7OG9vclZEmxX7CbK9AF4v0wTgIDSjpQQQ9UdZW44PXXpEiTkX0y_t2XRtsAR-TN6mZL28oGd004JtmrCc1eWm_eqnOTUl2io__F2_EsteprLBv1Lz9gaZrKE_EREKnNBY
942 _2udc
_cART
999 _c137882
_d137882